Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Journal
Document Type
Year range
1.
mBio ; 12(6): e0275621, 2021 12 21.
Article in English | MEDLINE | ID: covidwho-1494976

ABSTRACT

Outbreaks of emerging viral pathogens like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are a major medical challenge. There is a pressing need for antivirals that can be rapidly deployed to curb infection and dissemination. We determined the efficacy of interferon lambda-1 (IFN-λ) as a broad-spectrum antiviral agent to inhibit SARS-CoV-2 infection and reduce pathology in a mouse model of disease. IFN-λ significantly limited SARS-CoV-2 production in primary human bronchial epithelial cells in culture. Pretreatment of human lung cells with IFN-λ completely blocked infectious virus production, and treatment with IFN-λ at the time of infection inhibited virus production more than 10-fold. To interrogate the protective effects of IFN-λ in response to SARS-CoV-2 infection, transgenic mice expressing the human angiotensin-converting enzyme 2 (ACE-2) were tested. One dose of IFN-λ administered intranasally was found to reduce animal morbidity and mortality. Our study with SARS-CoV-2 also revealed a sex differential in disease outcome. Male mice had higher mortality, reflecting the more severe symptoms and mortality found in male patients infected with SARS-CoV-2. The results indicate that IFN-λ potentially can treat early stages of SARS-CoV-2 infection and decrease pathology, and this murine model can be used to investigate the sex differential documented in COVID-19. IMPORTANCE The COVID-19 pandemic has claimed millions of lives worldwide. In this report, we used a preclinical mouse model to investigate the prophylactic and therapeutic value of intranasal IFN-λ for this acute respiratory disease. Specific vaccines have been responsible for curbing the transmission of SARS-CoV-2 in developed nations. However, vaccines require time to generate and keep pace with antigenic variants. There is a need for broad-spectrum prophylactic and therapeutic agents to combat new emerging viral pathogens. Our mouse model suggests IFN-λ has clinical utility, and it reflects the well-documented finding that male COVID-19 patients manifest more severe symptoms and mortality. Understanding this sex bias is critical for considering therapeutic approaches to COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/immunology , COVID-19/therapy , Epithelial Cells/drug effects , Interferons/immunology , Interferons/pharmacology , SARS-CoV-2/immunology , Administration, Intranasal , Angiotensin-Converting Enzyme 2/genetics , Animals , Antiviral Agents/pharmacology , Bronchi/cytology , Disease Models, Animal , Epithelial Cells/immunology , Epithelial Cells/virology , Female , HEK293 Cells , Humans , Interferons/classification , Lung/drug effects , Lung/pathology , Lung/virology , Male , Mice , Mice, Transgenic , Risk Factors , SARS-CoV-2/drug effects , Sex Factors
2.
mBio ; 11(6)2020 12 11.
Article in English | MEDLINE | ID: covidwho-975645

ABSTRACT

SARS-CoV-2 causes COVID-19, an acute respiratory distress syndrome (ARDS) characterized by pulmonary edema, viral pneumonia, multiorgan dysfunction, coagulopathy, and inflammation. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) receptors to infect and damage ciliated epithelial cells in the upper respiratory tract. In alveoli, gas exchange occurs across an epithelial-endothelial barrier that ties respiration to endothelial cell (EC) regulation of edema, coagulation, and inflammation. How SARS-CoV-2 dysregulates vascular functions to cause ARDS in COVID-19 patients remains an enigma focused on dysregulated EC responses. Whether SARS-CoV-2 directly or indirectly affects functions of the endothelium remains to be resolved and is critical to understanding SARS-CoV-2 pathogenesis and therapeutic targets. We demonstrate that primary human ECs lack ACE2 receptors at protein and RNA levels and that SARS-CoV-2 is incapable of directly infecting ECs derived from pulmonary, cardiac, brain, umbilical vein, or kidney tissues. In contrast, pulmonary ECs transduced with recombinant ACE2 receptors are infected by SARS-CoV-2 and result in high viral titers (∼1 × 107/ml), multinucleate syncytia, and EC lysis. SARS-CoV-2 infection of ACE2-expressing ECs elicits procoagulative and inflammatory responses observed in COVID-19 patients. The inability of SARS-CoV-2 to directly infect and lyse ECs without ACE2 expression explains the lack of vascular hemorrhage in COVID-19 patients and indicates that the endothelium is not a primary target of SARS-CoV-2 infection. These findings are consistent with SARS-CoV-2 indirectly activating EC programs that regulate thrombosis and endotheliitis in COVID-19 patients and focus strategies on therapeutically targeting epithelial and inflammatory responses that activate the endothelium or initiate limited ACE2-independent EC infection.IMPORTANCE SARS-CoV-2 infects pulmonary epithelial cells through ACE2 receptors and causes ARDS. COVID-19 causes progressive respiratory failure resulting from diffuse alveolar damage and systemic coagulopathy, thrombosis, and capillary inflammation that tie alveolar responses to EC dysfunction. This has prompted theories that SARS-CoV-2 directly infects ECs through ACE2 receptors, yet SARS-CoV-2 antigen has not been colocalized with ECs and prior studies indicate that ACE2 colocalizes with alveolar epithelial cells and vascular smooth muscle cells, not ECs. Here, we demonstrate that primary human ECs derived from lung, kidney, heart, brain, and umbilical veins require expression of recombinant ACE2 receptors in order to be infected by SARS-CoV-2. However, SARS-CoV-2 lytically infects ACE2-ECs and elicits procoagulative and inflammatory responses observed in COVID-19 patients. These findings suggest a novel mechanism of COVID-19 pathogenesis resulting from indirect EC activation, or infection of a small subset of ECs by an ACE2-independent mechanism, that transforms rationales and targets for therapeutic intervention.


Subject(s)
Blood Coagulation Factors , Endothelial Cells/virology , Inflammation , Peptidyl-Dipeptidase A/genetics , SARS-CoV-2/pathogenicity , Animals , Cells, Cultured , Chlorocebus aethiops , Endothelial Cells/immunology , Endothelial Cells/pathology , Humans , Recombinant Proteins , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL